

GATC Biotech AG, Jakob-Stadler-Platz 7, 78467 Konstanz

Data Analysis Report: ONCOPANEL ALL-IN-ONE v1.4

Project / Study: FE-0242

Date: February 28, 2018

Table of Contents

1	Resi	ults	1
	1.1	Variant discovery	1
	1.2	Sample-wise known clinical significant variants	1
		1.2.1 HD753_3 Results	1
		1.2.2 HD753_4 Results	5
	1.3	Copy number analysis	8
		1.3.1 HD753_3 Results	9
		1.3.2 HD753_4 Results	11
	1.4	Fusion gene discovery	13
		1.4.1 HD753_3 Results	14
		1.4.2 HD753_4 Results	15
2	Qua	lity Metrics	16
-	2.1	Sequence Quality Metrics	16
	2.2	Alignment Metrics	16
	2.3	Alignment Classification	16
	2.4	Alignment Refinement Metrics	17
	2.5	Coverage Report	18
	2.6	Library Report	20
3	Deli	verables	22
л	Fam		าา
4	Form	nats	22
5	FAQ	\mathbf{D}	23
6	Bibli	liography	24
Ap	pend	lix A Analysis Workflow	26
Ap	pend	lix B Sequence Data Used	27
Ap	pend	dix C Reference Database	28
Aŗ	pend	lix D Relevant Programs	29
Aŗ	pend	dix E Tables	30

1 Results

🛟 eurofins

1.1 Variant discovery

Single nucleotide variants (SNVs), Insertions and deletions (InDel) are detected in each sample using LoFreq[1], and are filtered based on mutation allele frequency (>1%) and coverage (\geq 10% of average coverage excluding duplicated fragments; coverage metrics can be found in chapter 2.5). Variants that pass these thresholds are summarised in the following table(s).

	HD753_3	HD753_4
Total SNV	72893	72170
Known SNV	9817	9750
Unknown SNV	63076	62420
Total InDel	26616	28059
Known InDel	1145	1191
Unknown InDel	25471	26868

Table 1: Variant metrics for HD753_3, HD753_4.

Known SNV / InDel: in reference variant databases (dbSNP, COSMIC[2] and / or ClinVar[3]). Unknown SNV / InDel: currently not listed in reference variant database (as aforementioned).

1.2 Sample-wise known clinical significant variants

Variants detected are screened for known clinical significance in ClinVar (released 02. Oct 2017) [3] database. The ClinVar database aggregates information about genomic variation and its relationship to human health. It is hosted by the National Center for Biotechnology Information (NCBI). Detailed explanation of clinical significance in ClinVar database can be found at https://www.ncbi.nlm.nih.gov/clinvar/docs/clinsig/.

Variants which have clinical significance state as "Likely pathogenic", "Pathogenic" and "Drug response" are filtered from the complete list of variants and are reported in following table(s). For more detailed information navigate to the Clinvar database and type in the dbIDs of your variant of interest. Variant effects for multiple transcripts for the same variant are listed as separate entries. In case of multiple transcripts, transcripts which have missense, splice junction, UTR, frameshift, disruptive frameshift insertion / deletion variant types are listed.

1.2.1 HD753_3 Results

Table 2: Variants (SNV and InDels) in sample - HD753_3. Entries are sorted by gene.

Location	Gene	AA Change	Codon Change	Mutation Freq.	Depth	ClinVar ID	ClinVar Significance
chr7:87160618	ABCB1	p.S893A p.S829A	c.2677T>G c.2485T>G	64.9 %	1394x	166622	drug response
chr5:131931451	AC116366.3		c.*2341delA c.*1321delA c.*2025delA c.*2155delA	15.0 %	1372x	408407	pathogenic

Location	Gene	AA Change	Codon Change	Mutation Freq.	Depth	ClinVar ID	ClinVar Significance
chr14:105246551	AKT1	p.E17К	n.80G>A c.49G>A	5.4 %	948×	13983	pathogenic
chr10:96540410	AL583836.1		c.*394G>A	5.0 %	1191×	16899	drug response
chr10:96541616	AL583836.1		c.*439G>A	19.8 %	1024x	16897	drug response
chr20:31022441	ASXL1	p.G641fs p.G646fs	c.1919insG c.1934insG	4.5 %	661x	426927	pathogenic
chr11:108205832	ATM	p.V2716A	c.8147T>C	4.1 %	1861x	142700	pathogenic
chr17:63532584	AXIN2	p.G600fs p.G665fs	c.1799delG c.1994delG	5.3 %	452x	5880	pathogenic
chr19:49458970	BAX	p.R24fs p.E24fs p.E41fs	c.69delG c.70delG c.121delG	6.3 %	867x	9512	pathogenic
chr7:140453136	BRAF	p.V207E p.V600E p.V28E	c.*1249T>A c.620T>A c.1799T>A c.83T>A	18.5 %	1685x	13961	pathogenic
chr17:41234451	BRCA1		c.*4110C>T	5.0 %	1824x	17675	pathogenic
chr13:32937354	BRCA2	p.12675fs	c.8021insA	5.2 %	1044x	267050	pathogenic
chr9:21971186	CDKN2A	p.P72L	c.*95C>T c.215C>T	8.1 %	211x	376310	likely pathogenic
chr15:93545433	CHD2	p.Q1392fs	c.4173insA c.*406insA c.*344insA	7.6 %	262x	218395	pathogenic
chr3:41266101	CTNNB1	p.S33Y p.S26Y	c.98C>A c.77C>A	5.6 %	1473x	17577	pathogenic
chr10:17113456	CUBN	p.S865N	c.2594G>A	4.6 %	798x	265086	pathogenic
chr19:41512841	CYP2B6	p.Q172H	c.516G>T	24.3 %	1945×	29671	drug response
chr19:41515263	CYP2B6	p.K262R	c.785A>G	25.2 %	547×	120171	drug response
chr10:96702047	CYP2C9	p.R144C	c.430C>T	9.0 %	1718x	8409	drug response
chr10:96741053	CYP2C9	p.1359L	c.1075A>C	5.7 %	1307×	8408	drug response
chr22:42524947	CYP2D6		c.353-1G>A c.440-1G>A c.506-1G>A n.1198-1G>A c.173-1G>A	32.4 %	550x	16889	drug response
chr22:42526694	CYP2D6	p.P34S p.P12S	c.100C>T c.34C>T	52.0 %	252x	16893	drug response
chr7:55242464	EGFR	p.E746_ A750del p.E701_ A705del	c.2235_ 2249delGGAAT c.2100_ 2114delGGAAT c.*225_ *239delGGAAT	таададаадс таадад҄Ӑ҄ѽ҄с таададаадс	1960×	163343	drug response
chr7:55248998	EGFR	p.A767_ V769ins p.A722_ V724ins	c.2300_ 2308insCCAGC c.*290_ *298insCCAGC c.2165_ 2173insCCAGC	GTGG GTGG ^{3.4 %} GTGG	1442x	177678	drug response
chr22:41565529	EP300	p.D1399N	c.4195G>A	11.0 %	1138x	376401	likely pathogenic

Location	Gene	AA Change	Codon Change	Mutation Freq.	Depth	ClinVar ID	ClinVar Significance
chr8:118849384	EXT1	p.R129H p.R340H	c.386G>A c.1019G>A	11.4 %	1252×	265129	pathogenic
chr5:176520243	FGFR4	p.G23R p.G388R	c.67G>A c.1162G>A	35.0 %	443×	16326	pathogenic
chr19:3118942	GNA11	p.Q57L p.Q209L	c.170A>T c.626A>T	5.8 %	950×	376002	pathogenic
chr11:67352689	GSTP1	p.I105V	c.*137A>G c.313A>G	61.6 %	1461×	37340	drug response
chr12:121432114	HNF1A	p.P291fs p.G226fs	c.864delG c.677delG c.*304delG	6.3 %	748×	435424	pathogenic
chr7:142640113	KEL	p.L597P	c.1790T>C	16.0 %	1504×	31082	pathogenic
chr12:25398281	KRAS	p.G13D	c.38G>A	4.3 %	1689×	12580	pathogenic
chr15:66727451	MAP2K1	p.Q56P	c.167A>C	3.7 %	1341×	375978	pathogenic
chr15:66729147	MAP2K1	p.H119Y	c.355C>T	4.5 %	1772x	40741	pathogenic
chr5:79970914	MSH3	p.K383fs	c.1148delA	31.5 %	1272x	8738	pathogenic
chr2:48030639	MSH6	p.F56fs p.F1088fs p.F958fs p.F786fs	c.165delC c.3261delC c.*2608delC c.2871delC c.2355delC	1.1 %	1595×	89363	pathogenic
chr2:48030639	MSH6	p.F786fs p.F1088fs p.F958fs p.F56fs	c.2355insC c.3261insC c.*2608insC c.2871insC c.165insC	5.1 %	1595×	89364	pathogenic
chr17:29553477	NF1	p.P678fs p.P344fs p.P712fs	c.2033delC c.1031delC c.*1434delC c.2135delC	5.6 %	1194×	428991	pathogenic
chr17:29553477	NF1	p.1345fs p.1679fs p.1713fs	c.1031insC c.2033insC c.*1434insC c.2135insC	4.2 %	1194×	141513	pathogenic
chr3:178936091	PIK3CA	p.E545K	c.1633G>A	5.0 %	1291×	13655	pathogenic
chr3:178947865	PIK3CA	p.G914R	c.2740G>A	5.6 %	2226×	39703	pathogenic
chr3:178952085	PIK3CA	p.H1047R	c.3140A>G	14.4 %	1957×	13652	pathogenic
chr5:131931451	RAD50	p.K722fs p.?661fs	c.2165delA c.*1791delA c.*351delA c.1982delA	15.0 %	1372x	408407	pathogenic
chr12:21331549	SLCO1B1	p.V174A	c.521T>C	19.6 %	1539×	37346	drug response
chr7:141672604	TAS2R38	p.1296V	c.886A>G	58.6 %	2304×	2906	drug response
chr7:141673345	TAS2R38	p.A49P	c.145G>C	55.0 %	2233×	2904	drug response
chr17:7577559	TP53	p.S82F p.S230F p.S202F p.S109F p.S148F p.S241F	c.245C>T c.689C>T c.605C>T c.326C>T c.443C>T c.722C>T	5.9 %	752x	12359	pathogenic

Location	Gene	AA Change	Codon Change	Mutation Freq.	Depth	ClinVar ID	ClinVar Significance
chr17:7577559	TP53	p.S148C p.S82C p.S241C p.S230C p.S109C p.S202C	c.443C>G c.245C>G c.722C>G c.689C>G c.326C>G c.605C>G	5.7 %	752x	177791	likely pathogenic
chr17:7579472	TP53	p.P33R p.P72R	c.98C>G c.215C>G	80.5 %	931x	12351	drug response
chr21:44524456	U2AF1	p.S34F	c.101C>T c186C>T c119C>T	8.1 %	677×	376025	likely pathogenic
chr21:44524456	U2AF1L5	p.S34F	c.101C>T c186C>T c119C>T	8.1 %	677×	376025	likely pathogenic
chr3:14187449	XPC	p.Q939K	c.2815C>A c.*2268C>A	40.5 %	570x	190215	drug response

1.2.2 HD753_4 Results

Table 3: Variants	(SNV and	InDels) in sam	ple - HD753_4.	Entries are sorted by gene.
-------------------	----------	----------------	----------------	-----------------------------

Location	Gene	AA Change	Codon Change	Mutation Freq.	Depth	ClinVar ID	ClinVar Significance
chr7:87160618	ABCB1	p.S893A p.S829A	c.2677T>G c.2485T>G	67.4 %	1281x	166622	drug response
chr5:131931451	AC116366.3	. - . .	c.*2341delA c.*1321delA c.*2025delA c.*2155delA	15.4 %	1267×	408407	pathogenic
chr14:105246551	AKT1	р.Е17К	n.80G>A c.49G>A	5.4 %	905×	13983	pathogenic
chr10:96540410	AL583836.1		c.*394G>A	4.1 %	1128x	16899	drug response
chr10:96541616	AL583836.1		c.*439G>A	20.8 %	942x	16897	drug response
chr20:31022441	ASXL1	p.G641fs p.G646fs	c.1919insG c.1934insG	4.1 %	580×	426927	pathogenic
chr11:108205832	ATM	p.V2716A	c.8147T>C	4.1 %	1653×	142700	pathogenic
chr17:63532584	AXIN2	p.G600fs p.G665fs	c.1799delG c.1994delG	5.6 %	393x	5880	pathogenic
chr19:49458970	BAX	p.E41fs p.R24fs p.E24fs	c.121insG c.69insG c.70insG	0.8 %	860×	9511	pathogenic
chr7:140453136	BRAF	p.V207E p.V600E p.V28E	c.*1249T>A c.620T>A c.1799T>A c.83T>A	18.3 %	1597×	13961	pathogenic
chr17:41234451	BRCA1	.	c.*4110C>T	5.1 %	1712x	17675	pathogenic
chr13:32937354	BRCA2	p.12675fs	c.8021insA	6.1 %	906×	267050	pathogenic
chr9:21971186	CDKN2A	p.P72L	c.*95C>T c.215C>T	11.8 %	211x	376310	likely pathogenic
chr15:93545433	CHD2	p.Q1392fs	c.4173insA c.*406insA c.*344insA	11.5 %	252x	218395	pathogenic
chr3:41266101	CTNNB1	p.S33Y p.S26Y	c.98C>A c.77C>A	6.1 %	1382x	17577	pathogenic
chr10:17113456	CUBN	p.S865N	c.2594G>A	4.7 %	654×	265086	pathogenic
chr19:41512841	CYP2B6	p.Q172H	c.516G>T	25.8 %	1905×	29671	drug response
chr19:41515263	CYP2B6	p.K262R	c.785A>G	24.5 %	477×	120171	drug response
chr10:96702047	CYP2C9	p.R144C	c.430C>T	10.4 %	1648×	8409	drug response
chr10:96741053	CYP2C9	p.1359L	c.1075A>C	5.2 %	1253x	8408	drug response
chr22:42524947	CYP2D6		c.353-1G>A c.440-1G>A c.506-1G>A n.1198-1G>A c.173-1G>A	34.1 %	554x	16889	drug response
chr22:42526694	CYP2D6	p.P34S p.P12S	c.100C>T c.34C>T	53.3 %	242x	16893	drug response

Location	Gene	AA Change	Codon Change	Mutation Freq.	Depth	ClinVar ID	ClinVar Significance
chr7:55242464	EGFR	p.E746_ A750del p.E701_ A705del ·	c.2235_ 2249delGGAAT c.2100_ 2114delGGAAT c.*225_ *239delGGAAT	таададаадс таададааса таададаадс	1911×	163343	drug response
chr7:55248998	EGFR	p.A767_ V769ins p.A722_ V724ins	c.2300_ 2308insCCAGC c.*290_ *298insCCAGC c.2165_ 2173insCCAGC	GTGG GTGG ^{4.5%} GTGG	1325x	177678	drug response
chr22:41565529	EP300	p.D1399N	c.4195G>A	9.8 %	1018×	376401	likely pathogenic
chr8:118849384	EXT1	p.R129H p.R340H	c.386G>A c.1019G>A	11.1 %	1140×	265129	pathogenic
chr5:176520243	FGFR4	p.G23R p.G388R	c.67G>A c.1162G>A	28.7 %	401×	16326	pathogenic
chr19:3118942	GNA11	p.Q57L p.Q209L	c.170A>T c.626A>T	4.3 %	857x	376002	pathogenic
chr11:67352689	GSTP1	p.I105V	c.*137A>G c.313A>G	58.7 %	1398×	37340	drug response
chr12:121432114	HNF1A	p.P291fs p.G226fs	c.864delG c.677delG c.*304delG	5.0 %	723x	435424	pathogenic
chr7:142640113	KEL	p.L597P	c.1790T>C	17.4 %	1431×	31082	pathogenic
chr12:25398281	KRAS	p.G13D	c.38G>A	4.6 %	1534×	12580	pathogenic
chr15:66727451	MAP2K1	p.Q56P	c.167A>C	5.1 %	1213x	375978	pathogenic
chr15:66729147	MAP2K1	p.H119Y	c.355C>T	5.0 %	1676×	40741	pathogenic
chr5:79970914	MSH3	p.K383fs	c.1148delA	30.6 %	1058×	8738	pathogenic
chr2:48030639	MSH6	p.F56fs p.F1088fs p.F958fs p.F786fs	c.165delC c.3261delC c.*2608delC c.2871delC c.2355delC	0.9 %	1662×	89363	pathogenic
chr2:48030639	MSH6	p.F786fs p.F1088fs p.F958fs p.F56fs	c.2355insC c.3261insC c.*2608insC c.2871insC c.165insC	5.2 %	1662x	89364	pathogenic
chr17:29553477	NF1	p.1345fs p.1679fs p.1713fs	c.1031insC c.2033insC c.*1434insC c.2135insC	4.8 %	1140×	141513	pathogenic
chr17:29553477	NF1	p.P678fs p.P344fs p.P712fs	c.2033delC c.1031delC c.*1434delC c.2135delC	5.8 %	1140×	428991	pathogenic
chr16:23646980	PALB2	p.M1fs p.M296fs	c.1delA c.886delA	0.3 %	1369x	143979	pathogenic
chr3:178936091	PIK3CA	p.E545K	c.1633G>A	4.8 %	1238x	13655	pathogenic
chr3:178947865	PIK3CA	p.G914R	c.2740G>A	4.6 %	2110x	39703	pathogenic
chr3:178952085	PIK3CA	p.H1047R	c.3140A>G	15.2 %	1846×	13652	pathogenic

Location	Gene	AA Change	Codon Change	Mutation Freq.	Depth	ClinVar ID	ClinVar Significance
chr5:131931451	RAD50	p.K722fs - - p.?661fs	c.2165delA c.*1791delA c.*351delA c.1982delA	15.4 %	1267×	408407	pathogenic
chr12:21331549	SLCO1B1	p.V174A	c.521T>C	18.1 %	1494×	37346	drug response
chr7:141672604	TAS2R38	p.1296V	c.886A>G	59.1 %	2209×	2906	drug response
chr7:141673345	TAS2R38	p.A49P	c.145G>C	54.4 %	2126×	2904	drug response
chr17:7577559	TP53	p.S148C p.S82C p.S241C p.S230C p.S109C p.S202C	c.443C>G c.245C>G c.722C>G c.689C>G c.326C>G c.605C>G	4.2 %	782x	177791	likely pathogenic
chr17:7577559	TP53	p.S82F p.S230F p.S202F p.S109F p.S148F p.S241F	c.245C>T c.689C>T c.605C>T c.326C>T c.443C>T c.722C>T	6.8 %	782x	12359	pathogenic
chr17:7579472	TP53	p.P33R p.P72R	c.98C>G c.215C>G	81.2 %	807×	12351	drug response
chr21:44524456	U2AF1	p.S34F	c.101C>T c186C>T c119C>T	8.2 %	622x	376025	likely pathogenic
chr21:44524456	U2AF1L5	p.S34F	c.101C>T c186C>T c119C>T	8.2 %	622x	376025	likely pathogenic
chr3:14187449	XPC	p.Q939K	c.2815C>A c.*2268C>A	34.0 %	580×	190215	drug response

1.3 Copy number analysis

Copy number variations (CNV) are detected using the software package CNVkit[4] which uses normalized read depths to infer copy number evenly across the exome/genome. CNVkit uses both the on-target reads and the nonspecifically captured off-target reads to calculate log2 copy ratios across the genome for each sample. Briefly, off-target bins are assigned from the genomic positions between targeted regions, with the average off-target bin size being much larger than the average on-target bin to match their read counts. Both the on and off target locations are then separately used to calculate the mean read depth within each interval. The on and off target read depths are then combined, normalized to a reference derived from control samples, corrected for several systematic biases (GC content, sequence complexity and targets) to result in a final table of log2 copy ratios. Then, the segmentation algorithm uses log2 ratio values to infer discrete copy number events.Copy number events with minimum 100 x coverage are reported.

Table 4: Case vs Control setup.

Case	Control(s)
HD753_3	NA12878_Pv2_052017_CNV_R1, NA12878_Pv2_052017_CNV_R2
HD753_4	NA12878_Pv2_052017_CNV_R1, NA12878_Pv2_052017_CNV_R2

Table 5: Summary of CNV events detected in each sample.

Sample	Duplication Events	Deletion Events
HD753_3	24	10
HD753_4	23	14

1.3.1 HD753_3 Results

Figure 1: Ideogram representing chromosome wise copy number events observed in sample HD753_3. Copy gain events are drawn in red and copy loss events are drawn in blue.

Table 6: Duplication events detected in sample HD753_3. Gene column lists the name of genes (HGNC convention), CN column contains copy number observed and Depth column displays the coverage depth at the location (Loci column).

Gene	CN	Depth	Loci
MYCNOS, MYCN	9	3407.48	chr2:15729629-16086340
LOC727677, MYC	9	4076.32	chr8:128093106-129192460
MET	4	5155.89	chr7:116312530-116339669
MET	4	2222.36	chr7:116339669-116436309
TAS2R38, KEL, EZH2, RHEB, MLL3	3	1453.71	chr7:141672348-151879671
STAT3, BRCA1	3	1440.28	chr17:40469026-41248090
RNF43, RAD51C, RPS6KB1, BRIP1, MED13, CD79B, GNA13, AXIN2, PRKAR1A, FAM20A, SOX9, RHBDF2, SRSF2, SRSF2, MIR636, SRSF2, MIR636, MFSD11, SRSF2, MFSD11, SEPT9, RPTOR	3	1046.06	chr17:56432135-78938285
PSCA, RECQL4	3	699.78	chr8:129543758-145743186
PREX2, NCOA2, ATP6V0D2, WWP1, NBN, RUNX1T1, ESRP1	3	1219.44	chr8:68864809-95718352
POT1, GRM8, SMO, KIAA1549	3	1291.67	chr7:124503268-138604337

Gene	CN	Depth	Loci
NUP93	3	1229.2	chr16:56782028-56878711
NRAS, FAM46C, HSD3B1, NOTCH2	3	1236.54	chr1:115258835-120572569
NIPA2, GREM1	3	1016.07	chr15:23021376-33023568
MLL, PHLDB1, CBL, CHEK1			chr11:118318180- 125497553
KAT6A, PRKDC, LYN, CHD7, PREX2	3	1130.77	chr8:41906529-68864809
HOXB13, ZNF652, SPOP	3	1150.96	chr17:46804028-47700323
HGF, GRM3, CROT, ABCB1, AKAP9	3	1282.82	chr7:81399053-91719132
EXT1, FBXO32	3	1330.89	chr8:118811823-124553306
CYP2D6	3	702.1	chr22:42522943-42525265
CSMD3, RAD21	3	1136.85	chr8:113236859-117879116
CCDC127, SDHA, SDHA, TERT, CLPTM1L, TRIO	3	941.97	chr5:218285-14532057
CARD11, PMS2, RAC1, DNAH11, IL6, TBX20, ELMO1, AMPH, INHBA, INHBA, INHBA-AS1, IKZF1, EGFR, EGFR, EGFR-AS1	3	1072.63	chr7:2946153-55273441
C11orf30, DLG2, EED, TYR, FAT3	3	1487.38	chr11:76157827-92624397
AKAP9, CDK6, SAMD9L, LMTK2, TRRAP, PIK3CG, NRCAM	3	1483.3	chr7:91722300-107880675

Table 7: Deletion events detected in sample HD753_3. Gene column lists the name of genes (HGNC convention), CN column contains copy number observed and Depth column displays the coverage depth at the location (Loci column).

Gene	CN			
RARA	1	2956.98	chr17:38497282-38499676	
PPP2R3B, CRLF2, FANCB, ZRSR2, NHS, DMD, BCOR, DDX3X, KDM6A, RBM10, ARAF, GATA1, KDM5C	1	665.76	chrX:320389-53222482	
PHOX2B, CHIC2	1	598.86	chr4:27162572-54930627	
LTK	1	113.2	chr15:41803307-41804311	
IRS2, GAS6-AS1, GAS6, GAS6	1	322.92	chr13:110434353- 114566778	
GATA6	1	109.41	chr18:19751090-19757211	
DMRT1, JAK2	1	648.78	chr9:845380-5126957	
CDKN2A, CDKN2B-AS1, CDKN2B, CDKN2B-AS1	1	357.65	chr9:21968129-22062228	
BTK, PAK3, STAG2, BCORL1, GPC3, PHF6, ZIC3, G6PD, G6PD, IKBKG	1	733.32	chrX:100604718-153775209	
ATRX	1	764.09	chrX:76776109-77041667	

1.3.2 HD753_4 Results

Figure 2: Ideogram representing chromosome wise copy number events observed in sample HD753_4. Copy gain events are drawn in red and copy loss events are drawn in blue.

Table 8: Duplication events detected in sample HD753_4. Gene column lists the name of genes (HGNC convention), CN column contains copy number observed and Depth column displays the coverage depth at the location (Loci column).

Gene	CN	Depth	Loci
MYCNOS, MYCN	9	3210.06	chr2:15729629-16086340
LOC727677, MYC	9	3808.59	chr8:128093106-129192460
NRCAM, MET	4	4735.58	chr7:107880235-116335700
MET	4	3046.81	chr7:116335700-116436309
STAT3, BRCA1	3	1354.15	chr17:40468930-41248090
SAMD9L, LMTK2, TRRAP, PIK3CG, NRCAM	3	1436.99	chr7:92760906-107878400
RNF43, RAD51C, RPS6KB1, BRIP1, MED13, CD79B, GNA13, AXIN2, PRKAR1A, FAM20A, SOX9, RHBDF2, SRSF2, SRSF2, MIR636, SRSF2, MIR636, MFSD11, SRSF2, MFSD11, SEPT9, RPTOR	3	985.26	chr17:56432135-78938285
PSCA, RECQL4	3	683.55	chr8:129543758-145743186
PRKDC, LYN, CHD7, PREX2	3	1057.83	chr8:48686615-68864809
PREX2, NCOA2, ATP6V0D2, WWP1, NBN, RUNX1T1, ESRP1	3	1134.78	chr8:68864809-95718352

🛟 eurofins

Gene	CN	Depth	Loci
POT1, GRM8, SMO, KIAA1549, BRAF, TAS2R38, KEL, EZH2, RHEB, MLL3	3	1383.66	chr7:124462349-151879671
NUP93	3	1156.22	chr16:56782028-56878711
MLL, PHLDB1, CBL, CHEK1	3	1443.7	chr11:118307674- 125497553
HOXB13, ZNF652, SPOP	3	1078.12	chr17:46804028-47700323
HGF, GRM3, CROT, ABCB1, AKAP9, CDK6, SAMD9L	3	1198.66	chr7:81399053-92760906
FBXO32	3	1051.59	chr8:124526431-124553306
EXT1, FBXO32	3	1301.2	chr8:118811823-124526431
EED, TYR, FAT3	3	1636.83	chr11:85989283-92624397
CYP2D6	3	680.21	chr22:42522943-42525369
CSMD3, RAD21	3	1062.6	chr8:113236859-117879116
CCDC127, SDHA, SDHA, TERT, CLPTM1L, TRIO	3	896.26	chr5:218285-14532057
CARD11, PMS2, RAC1, DNAH11, IL6, TBX20, ELMO1, AMPH, INHBA, INHBA, INHBA-AS1, IKZF1, EGFR, EGFR, EGFR-AS1	3	1010.54	chr7:2946153-55273441
C11orf30	3	1191.31	chr11:76157827-76261312

Table 9: Deletion events detected in sample HD753_4. Gene column lists the name of genes (HGNC convention), CN column contains copy number observed and Depth column displays the coverage depth at the location (Loci column).

Gene	CN	Depth	Loci
USP25	1	682.48	chr21:17135058-17250927
RARA	1	2787.03	chr17:38497482-38499177
PPP2R3B, CRLF2, FANCB, ZRSR2, NHS, DMD, BCOR, DDX3X, KDM6A, RBM10, ARAF, GATA1, KDM5C	1	620.9	chrX:320389-53222482
PHOX2B	1	399.86	chr4:27162287-41748357
MIR548AN, FGF14, BIVM-ERCC5, ERCC5, IRS2, GAS6-AS1, GAS6, GAS6	1	634.49	chr13:100041547- 114566778
FUBP1	1	704.69	chr1:78414264-78435748
DMRT1, JAK2	1	602.78	chr9:845380-5126957
CDKN2A, CDKN2B-AS1, CDKN2B, CDKN2B-AS1	1	347.12	chr9:21968129-22062228
CDA, ARID1A	1	155.91	chr1:20945002-27023944
CD274, PDCD1LG2, PTPRD, MLLT3, MTAP, CDKN2A	1	1 786.59 chr9:5455949-21968	
CCND3, VEGFA	1	172.01	chr6:41909068-43739196
BTK, PAK3, STAG2, BCORL1, GPC3, PHF6, ZIC3, G6PD, G6PD, IKBKG	1	693.44	chrX:100604718-153775209
ATRX	1	705.82	chrX:76763817-77041667
TCF7L2	0	139.28	chr10:114710993- 114711498

1.4 Fusion gene discovery

Fusion events are detected using the software DELLY2[5]. From the genome alignments, DELLY discovers fusion events (translocations and inversions) by integrating insert distances determined by the paired-end reads and split-read alignments to accurately detect genomic rearrangements at single nucleotide resolution. Fusion events are tagged as "Known fusions" if they match the entry in ChimerDB[6] (collection of known fusion events). Known fusion events are reported in the following sections (if any).

Table 10: Summary of fusion events detected in each sample.

Sample	Known events	Unknown events
HD753_3	1	2
HD753_4	1	2

1.4.1 HD753_3 Results

Figure 3: Circos plot displaying fusion events in relation to chromosome location for sample HD753_3. Fusion events observed on the same chromosome are drawn in red whereas fusion events that are on different chromosomes are drawn in blue. Gene annotations are drawn at the tip of the arcs.

Table 11: Fusion events detected in sample HD753_3. Associated disease and source of annotation are mentioned in Disease and Source column, respectively.

Fusion genes	Fusion location	Supporting fusion reads	Supporting paired reads	Disease	Source
RET-CCDC6	chr10:43609952- chr10:61638611	33	36	adenocarcinoma	Mitel- man,OMIM,GenBank

1.4.2 HD753_4 Results

Figure 4: Circos plot displaying fusion events in relation to chromosome location for sample HD753_4. Fusion events observed on the same chromosome are drawn in red whereas fusion events that are on different chromosomes are drawn in blue. Gene annotations are drawn at the tip of the arcs.

Table 12: Fusion events detected in sample HD753_4. Associated disease and source of annotation are mentioned in Disease and Source column, respectively.

Fusion genes	Fusion location	Supporting fusion reads	Supporting paired reads	Disease	Source
RET-CCDC6	chr10:43609952- chr10:61638611	22	21	adenocarcinoma	Mitel- man,OMIM,GenBank

2 Quality Metrics

🛟 eurofins

2.1 Sequence Quality Metrics

The base quality of each sequence read is inspected. Low quality calls are removed before proceeding with further processing. Using a sliding window approach, bases with low quality are removed from the 3' and 5' ends. Bases are removed if the average phred quality is below 15. Finally only mate pairs (forward and reverse read) were used for the next analysis step. The total amount of raw sequence data and the results of the quality filtering is collected and reported in the following table.

Table 13: Sequence quality metrics per sample

Sample	Total Reads	LQ Reads	Single Reads	HQ Reads
HD753_3	83,483,850	1,900,592 (2.3%)	1,791,324 (2.1%)	79,791,934 (95.6%)
HD753_4	77,279,854	1,821,082 (2.4%)	1,720,580 (2.2%)	73,738,192 (95.4%)

Total Reads: Total number of sequence reads analysed for each sample.

LQ Reads: Number of low quality reads.

Single Reads: Number of high quality reads without mates (2nd read). HQ Reads: Number of high quality reads used for further analysis.

2.2 Alignment Metrics

Mapping to the reference sequence/database is done using BWA[7] with default parameters. The following table contains the number of reads mapped to the reference for each sample. Please note that the mapping efficiency depends on the accuracy of the reference and the quality of sequence reads.

Table 14: Mapped read metrics observed per sample

Sample Name	HQ Reads	Mapped Reads
HD753_3	79,791,934	79,692,755 (99.88%)
HD753_4	73,738,192	73,635,493 (99.86%)

2.3 Alignment Classification

The alignment classification table includes the following read categories:

- Mapped: Reads mapped to reference.
- Unique: Reads mapped to exactly one site on the reference.
- Non-unique: Reads mapped to more than one site on the reference.
- Singletons: Mapped reads without mates (read not paired).
- Cross-Contig: Read pairs with the mate mapped to a different contig.

• On target: Reads mapped to target +/- 100 bp extension.

Percentage of reads in categories **Non-unique**, **Unique**, **Singletons**, **Cross-Contig** are calculated based on the number of reads mapping to entire reference.

Percentage of reads in category **On target** is calculated based on the number of reads mapped uniquely (excluding **Singletons** and **Cross-Contig** - if any).

Table 15: Read metrics for HD753_3, HD753_4.

Read category	HD753_3	HD753_4
Mapped	79,692,755	73,635,493
Unique	78,148,831 (98.06%)	72,185,992 (98.03%)
Non-unique	1,543,924 (1.94%)	1,449,501 (1.97%)
Singletons	16,467 (0.02%)	15,256 (0.02%)
Cross-Contig	185,612 (0.23%)	167,679 (0.23%)
On target	60,223,567 (77.26%)	53,068,587 (73.70%)

Reads in categorie(s) Non-unique , Singletons and Cross-Contig are excluded from analysis.

2.4 Alignment Refinement Metrics

The removal of PCR duplicates is done using Picard[8] in order to remove the artificial coverage brought on by the PCR amplification step during the library preparation. If a read maps to the same genomic location and has same orientation as the read already mapped it is considered as duplicated. For paired-end, both reads should fulfill the criteria in order to designate as PCR duplicate. One copy of the duplicate read pair is kept in the alignment.

Local realignment serves to transform regions with misalignments due to indels into clean reads containing a consensus indel suitable for standard variant discovery approaches. GATK is used for this purpose.

The goal of Base Quality Recalibration is to improve the base quality score of reads for downstream processing and also correct for error covariates like machine cycle and dinucleotide context. A base quality score represents the probability of a particular base mismatching the reference genome. After recalibration quality scores are more accurate in that they are closer to the true probability of mismatch. This process is achieved by analyzing the covariation among several different features of a base. The reported quality score, sequencing cycle, and sequencing context are considered for this step. GATK modules are used for achieving this.

The following table contains the number of high-quality reads after read mapping, alignment and refinement.

Table 16: HQAligned reads per sample

Sample Name	Input Reads	Duplicate Reads	HQ Reads
HD753_3	60,223,567	25,157,050 (41.77%)	35,066,517 (58.23%)
HD753_4	53,068,587	20,017,660 (37.72%)	33,050,927 (62.28%)

2.5 Coverage Report

The coverage plot showing the base coverage distribution from the HQ aligned data. Depth of coverage is plotted on X-axis and the percentage of the respective reference covered is plotted on Y-axis. The coverage plot is restricted to the target region without extension. The shape of the curve defines the uniformity of the reference coverage in the samples analysed. Samples with high uniformity usually have >90% covered at 0.2x average coverage (e.g. 100x for 500x average coverage)

Figure 5: Coverage plot (excluding duplicated fragments).

Table 17: Depth of coverage summary (excluding duplicated fragments).

	target coverage		%	% of target covered with at least			t
sample	total bases	average (x)	2x	50×	100x	300x	500x
HD753_3	4.14 GB	1425.33	100	98.9	97.8	93.4	87.7
HD753_4	3.92 GB	1350.25	100	98.9	97.7	93.0	86.7

🛟 eurofins

Coverage Distribution

Figure 6: Coverage plot (including duplicated fragments).

Table 18: Depth of coverage summary (including duplicated fragments).

target coverage			%	of target	covered w	ith at leas	t
sample	total bases	average (x)	2x	50x	100×	300x	500x
HD753_3	7.23 GB	2486.13	100	99.1	98.3	95.3	91.9
HD753_4	6.40 GB	2200.72	100	99.0	98.2	94.8	91.0

2.6 Library Report

Fragment insert size histogram of the paired-end library observed from all the samples analysed. The insert size is determined by mapping individual read pairs on the reference sequence. The distance between 5' prime ends of both sequenced reads in a pair that are mapped to the reference is the observed length of the sequenced fragment. By performing this operation for all mapped reads the distribution can be generated. X-axis shows the insert size in bp and Y-axis shows the number of fragments with the observed fragment insert sizes.

Figure 7: HD753_3 .

Table 19: Sample wise insert size metrics for HQ aligned reads. The mean insert size (Mean) and its standard deviation (Stddev) is given in base pairs.

Sample	Pair orientation	Mean	Stddev	# Read pairs
HD753_3	FR	232	81	17,495,031
HD753_4	FR	230	80	16,489,444

eurofins Genomics

Figure 8: HD753_4 .

3 Deliverables

🛟 eurofins

Table 20: List of delivered files, format and recommended programs to access the data.

File	Format	Program To Open File
PROJECT_supplementary_tables.tar.gz	GΖ	Unzip tool
SAMPLE.CNV_deletion.tsv	TSV	Spreadsheet Editor
SAMPLE.CNV_duplication.tsv	TSV	Spreadsheet Editor
SAMPLE.fusion_events.tsv	TSV	Spreadsheet Editor
SAMPLE.hg19.HQ.alignment.bam	BAM	IGV, Tablet
SAMPLE.hg19.HQ.alignment.bam.bai	BAI	None
SAMPLE.hg19.alignment.bam	BAM	IGV, Tablet
SAMPLE.hg19.alignment.bam.bai	BAI	None
SAMPLE.indels.tsv	TSV	Spreadsheet Editor
SAMPLE.indels.vcf	VCF	Text Editor
SAMPLE.snps.tsv	TSV	Spreadsheet Editor
SAMPLE.snps.vcf	VCF	Text Editor

SAMPLE.hg19.alignment.bam was used for Fusion Gene discovery (see chapter 1.4)

SAMPLE.hg19.HQ.alignment.bam was used for Variant discovery (see chapter 1.1) and for Copy number analysis (see chapter 1.3)

 $PROJECT_supplementary_tables.tar.gz$ contains the variant calls (SNVs and InDels) that were observed in the sample(s) but filtered out due to QC checks.

4 Formats

Table 21: References and descriptions of file format.

Format	Description
TSV	Tab separated table style text file. This can be imported into spreadsheet pro-
	cessing software like MS OFFICE Excel.
FASTQ[9]	Text-based format for storing both a biological sequence (usually nucleotide
	sequence) and its corresponding quality scores. Both the sequence letter and
	quality score are encoded with a single ASCII character for brevity.
BAM[10]	Compressed binary version of the Sequence Alignment/Mapping (SAM) format,
	a compact and index-able representation of nucleotide sequence alignments.
VCF[11]	Variant Call Format (VCF) is a format to describe and report the variants.

5 FAQ

Q: How can I open a TSV file in Excel?

A: Start Excel and click File -> Open and select the TSV file you want to open. Next an assistant dialog should show up. Make sure that you select tab as separator. Set the format of all rows without numbers to text. The TSV files use the dot as decimal separator and comma as thousands separator. Make sure that you set both correctly.

6 Bibliography

- [1] Andreas Wilm, Pauline Poh Kim P. Aw, Denis Bertrand, Grace Hui Ting H. Yeo, Swee Hoe H. Ong, Chang Hua H. Wong, Chiea Chuen C. Khor, Rosemary Petric, Martin Lloyd L. Hibberd, and Niranjan Nagarajan. LoFreq: a sequence-quality aware, ultra-sensitive variant caller for uncovering cell-population heterogeneity from high-throughput sequencing datasets. *Nucleic acids research*, 40(22):11189–11201, December 2012.
- [2] Simon A. Forbes, David Beare, Prasad Gunasekaran, Kenric Leung, Nidhi Bindal, Harry Boutselakis, Minjie Ding, Sally Bamford, Charlotte Cole, Sari Ward, Chai Y. Kok, Mingming Jia, Tisham De, Jon W. Teague, Michael R. Stratton, Ultan McDermott, and Peter J. Campbell. COSMIC: exploring the world's knowledge of somatic mutations in human cancer. *Nucleic Acids Research*, 43(D1):gku1075–D811, October 2014.
- [3] Melissa J. Landrum, Jennifer M. Lee, Mark Benson, Garth Brown, Chen Chao, Shanmuga Chitipiralla, Baoshan Gu, Jennifer Hart, Douglas Hoffman, Jeffrey Hoover, Wonhee Jang, Kenneth Katz, Michael Ovetsky, George Riley, Amanjeev Sethi, Ray Tully, Ricardo Villamarin-Salomon, Wendy Rubinstein, and Donna R. Maglott. ClinVar: public archive of interpretations of clinically relevant variants. *Nucleic Acids Research*, 44(D1):D862–D868, January 2016.
- [4] Eric Talevich, A. Hunter Shain, Thomas Botton, and Boris C. Bastian. CNVkit: Genome-Wide Copy Number Detection and Visualization from Targeted DNA Sequencing. *PLoS Comput Biol*, 12(4):e1004873+, April 2016.
- [5] Tobias Rausch, Thomas Zichner, Andreas Schlattl, Adrian M. Stütz, Vladimir Benes, and Jan O. Korbel. DELLY: structural variant discovery by integrated paired-end and split-read analysis. *Bioinformatics*, 28(18):i333–i339, September 2012.
- [6] Pora Kim, Suhyeon Yoon, Namshin Kim, Sanghyun Lee, Minjeong Ko, Haeseung Lee, Hyunjung Kang, Jaesang Kim, and Sanghyuk Lee. ChimerDB 2.0 - a knowledgebase for fusion genes updated. *Nucleic* acids research, 38(suppl 1):D81–D85, 2010.
- [7] Heng Li and Richard Durbin. Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics (Oxford, England)*, 25(14):1754–1760, July 2009.
- [8] Picard. http://picard.sourceforge.net.
- [9] Peter J. A. Cock, Christopher J. Fields, Naohisa Goto, Michael L. Heuer, and Peter M. Rice. The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. *Nucleic Acids Research*, 38(6):1767–1771, 2010.
- [10] Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer, Gabor Marth, Goncalo Abecasis, Richard Durbin, and 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. *Bioinformatics*, 25(16):2078–2079, 2009.
- [11] Petr Danecek, Adam Auton, Goncalo Abecasis, Cornelis A. Albers, Eric Banks, Mark A. DePristo, Robert E. Handsaker, Gerton Lunter, Gabor T. Marth, Stephen T. Sherry, Gilean McVean, Richard Durbin, and 1000 Genomes Project Analysis Group. The variant call format and vcftools. *Bioinformatics*, 27(15):2156–2158, 2011.
- [12] Derek Barnett, Erik Garrison, Aaron Quinlan, Michael Strömberg, and Gabor Marth. BamTools: a C++ API and toolkit for analyzing and managing BAM files. *Bioinformatics*, 27(12):btr174–1692, April 2011.
- [13] Mary Kate Wing. "bamUtil is a repository that contains several programs that perform operations on SAM/BAM files.". http://genome.sph.umich.edu/wiki/BamUtil, 2015.

- [14] Aaron R. Quinlan and Ira M. Hall. BEDTools: a flexible suite of utilities for comparing genomic features. *Bioinformatics*, 26(6):841–842, March 2010.
- [15] Aaron McKenna, Matthew Hanna, Eric Banks, Andrey Sivachenko, Kristian Cibulskis, Andrew Kernytsky, Kiran Garimella, David Altshuler, Stacey Gabriel, Mark Daly, and Mark A. DePristo. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Research*, 20(9):1297–1303, 2010.
- [16] Mark A DePristo, Eric Banks, Ryan Poplin, Kiran V Garimella, Jared R Maguire, Christopher Hartl, Anthony A Philippakis, Guillermo del Angel, Manuel A Rivas, Matt Hanna, Aaron McKenna, Tim J Fennell, Andrew M Kernytsky, Andrey Y Sivachenko, Kristian Cibulskis, Stacey B Gabriel, David Altshuler, and Mark J Daly. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet, 43:491–498, 2011.
- [17] R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2010. ISBN 3-900051-07-0.
- [18] Artem Tarasov, Albert J. Vilella, Edwin Cuppen, Isaac J. Nijman, and Pjotr Prins. Sambamba: fast processing of NGS alignment formats. *Bioinformatics*, February 2015.
- [19] Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer, Gabor Marth, Goncalo Abecasis, Richard Durbin, and 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. *Bioinformatics*, 25(16):2078–2079, 2009.
- [20] Pablo Cingolani. "snpEff: Variant effect prediction". http://snpeff.sourceforge.net, 2012.
- [21] Marc Lohse, Anthony M. Bolger, Axel Nagel, Alisdair R. Fernie, John E. Lunn, Mark Stitt, and Björn Usadel. RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics. *Nucleic Acids Research*, 40(W1):W622–W627, July 2012.

A Analysis Workflow

🛟 eurofins

The schematic diagram of the data analysis steps that have been performed is shown in figure 1.

Figure 9: ONCOPANEL ALL-IN-ONE v1.4 Workflow

B Sequence Data Used

🛟 eurofins

Table 22: Analysed samples (SE = single end, PE = paired end).

Sample	Read	File Name
	Туре	
HD753_3	PE	FE-0242_HD753_3_lib185570_5345_1_1.fastq
		FE-0242_HD753_3_lib185570_5345_1_2.fastq
HD753_4	PE	FE-0242_HD753_4_lib185571_5345_1_1.fastq
		FE-0242_HD753_4_lib185571_5345_1_2.fastq

C Reference Database

🛟 eurofins

Table 23: Information about the Homo sapiens Reference Database.

Tag	Description
Name	Homo sapiens
Version	hg19.chronly
Source	UCSC
Size (bp)	3.095 GB
Sequences	23

Table 24: Information about additional reference data used.

Туре	Version	Source
Annotation	19	GENCODE
dbSNP	150	NCBI
ClinVar[3]	02.10.17	NCBI
COSMIC[2]	71	Sanger Institute
ChimerDB[6]	2.0	ERCSB

Table 25: Information about the target region used.

Tag	Description
Name	GATC All in One
Size (bp)	2,908,369
Source	GATC Biotech AG

D Relevant Programs

🛟 eurofins

Table 26: Name, version and description of relevant programs.

Program	Version	Description
bamtools[12]	2.3.0	BamTools provides a small, but powerful suite of command-line utility
		programs for manipulating and querying BAM files for data.
BamUtil[13]	1.0.10	BamUtil is a repository that contains several programs that perform operations on SAM/BAM files
bedtools[14]	2.26.0	Bedtools allows one to intersect, merge, count, complement, and shuffle
		genomic intervals from multiple files in widely-usedgenomic file formats such as BAM, BED, GEE/GTE, VCE
BWA[7]	0.7.15	BWA is a software package for mapping low-divergent sequences against
		a large reference genome
CNVkit[4]	0.9.1.dev(CNVkit is a Python library and command-line software toolkit to infer
		and visualize copy number from targeted DNA sequencing data
Delly2[5]	0.7.6	DELLY2: Structural variant discovery by integrated paired-end and split-
		read analysis
GATK[15, 16]	3.7	GATK is a java-based command-line toolkit that process SAM / BAM / VCF files.
LoFreq[1]	2.1.2	Lofreq is a fast and sensitive variant caller for inferring SNVs and indels
		from next-generation sequencing data.
Picard[8]	1.131	Picard is a java-based command-line utilities for processing SAM $/$ BAM
		files.
R[17]	3.2.4	${\sf R}$ is a programming language and environment for statistical computing.
sambamba[18]	0.6.6	Sambamba is a high performance modern robust and fast tool (and
		library), for working with SAM and BAM files.
SAMTools[19]	0.1.18	SAMtools provide various utilities for manipulating alignments in the
		SAM format.
snpEff[20]	4.3	SnpEff is a genetic variant annotation and effect prediction toolbox.
SnpSift[20]	4.3	SnpSift helps filtering and manipulating genomic annotated files .
Trimmomatic[21]	0.33	Trimmomatic performs a variety of useful trimming tasks for Illumina
		paired-end and single-end data.

E Tables

🛟 eurofins

Table 27: Definition of fields of the tab delimited variant report (Sample.indels.tsv and Sample.snps.tsv).

Name	Meaning
Ref ID	Name of chromosome or reference contig where the variant occurs.
Position	Position of reference contig or chromosome where the variant occurs.
Reference Base (s)	The reference base at the variant site.
Modified Base (s)	Alternative (observed) base in the samples in general [VARIANT].
Mutation Frequency (%)	The mutation frequency with which a particular mutation occurs in a population.
Coverage Depth (x)	The total depth of the reads that passed the internal quality control metrics from all reads present at this site.
dbID	Known variant indentifier.
FILTER	Variants passing the filters will be tagged as "PASS" and the variants failing the filters will be tagged by the respective filter names.
AF	Allele (Mutation) frequency.
DP	Counts for ref-forward bases, ref-reverse, alt-forward and alt-reverse bases.
CLNDSDBID	Variant disease database ID.
CLNSIG	Variant Clinical Significance, 0 - unknown, 1 - untested, 2 - non-pathogenic, 3 -
	probable-non-pathogenic, 4 - probable-pathogenic, 5 - pathogenic, 6 - drug-response,
	7 - histocompatibility, 255 - other.

Table 28: Definition of genomic annotations as produced by snpEff (Sample.indels.tsv and Sample.snps.tsv).

Name	Meaning	
EFFECT	Variant's effect on protein.	
IMPACT	Predicted impact from variant's protein effect.	
HGVS_C	Variant's codon change (DNA level).	
HGVS_P	Variant's codon change (Protein level).	
GENE	The gene entry associated with the location of the variant call.	
BIOTYPE	Variant's coding status.	
TRID	Associated transcript IDs.	
CDS_POS	Variant's codon change position.	
AA_POS	Variant's amino acid position.	

Eurofins Genomics' products, services and applications reach the best quality and safety levels. They are carried out under strict QM and QA systems and comply with the following standards:

ISO 9001	Globally recognised as the standard quality management certification	GLP	The gold standard to conduct non-clinical safety studies
ISO 17025	Accredited analytical excellence	GCP	Pharmacogenomic services for clinical studies
ISO 13485	Oligonucleotides according to medical devices standard	cGMP	Products and testing according to pharma and biotech requirements